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Biexcitons are bound in CsPbBr3 perovskite nanocrystals
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We study the energetics of quasiparticle excitations in CsPbBr3 perovskite nanocrystals using path integral
molecular dynamics simulations. Employing detailed molecular models, we elucidate the interplay of anhar-
monic lattice degrees of freedom, dielectric confinement, and electronic correlation on exciton and biexciton
binding energies of a range of nanocrystal sizes. We find generally good agreement with some experimental
observations of binding energies and additionally explain the observed size-dependent Stokes shift. The explicit
model calculations are compared with simplified approximations to rationalize the lattice contributions to
binding. We find that polaron formation significantly reduces exciton binding energies, whereas these effects
are negligible for biexciton interactions. While experimentally the binding energy of biexcitons is uncertain,
based on our study, we conclude that biexcitons are bound in CsPbBr3.
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I. INTRODUCTION

Lead halide perovskite nanocrystals are currently the sub-
ject of significant interest due to their exceptionally high
photoluminescence quantum yields, which make them ideal
materials for light emission, lasing, and photodetection [1–5].
The electronic properties of the lead halides depend strongly
on the coupling between charges and their surrounding soft,
polar lattices [6–11]. This coupling has been implicated
in several phenomena including photoinduced phase tran-
sitions, long radiative recombination rates, and anomalous
temperature-dependent mobilities [12–16]. In nanocrystals,
optical properties are largely determined by the behavior of
exciton complexes [17]. Recently, Dana et al. [18] proposed a
potential antibinding of biexcitons in perovskite nanocrystals,
implicating the potential role of the lattice in mediating this
interaction. Here, we study the energetics of quasiparticle
excitations including excitons and biexcitons with an explicit
description of the lattice, over a range of perovskite nanocrys-
tal sizes. We find that, while polaron formation weakens the
exciton binding energy, biexciton energetics are largely un-
affected, leading to an expectation that they are bound in
nanocrystals and in bulk.

Excitons and biexcitons are both characterized by a
binding energy, the energy required to dissociate the pair
of quasiparticles—free charges or excitons. While there is
reasonable consensus on the bulk exciton binding energy
[19–24], its dependence on nanocrystal size is less cer-
tain. Further, a number of biexciton binding energies have
been reported experimentally for lead halide perovskites, but
their values span a large range and even disagree in sign
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[2,3,18,25–31]. Experimental measurements are hampered
by the nanocrystal polydispersity, spectral drift, and thermal
broadening of spectral lines [32–34]. These ambiguities could
be clarified theoretically; however, there are few suitable ap-
proaches available. Unlike traditional semiconductors where
structural fluctuations can be ignored or described within
a harmonic approximation, the perovskite lattice structure
with its anharmonic tilting and rocking motions results in
significant renormalization of electronic properties [35–37].
Given that incorporating the effects from the lattice is im-
portant in understanding excitonic properties, there have been
some attempts to include them in a theoretical description.
For example, extensions to GW and Bethe-Salpeter equa-
tions have been developed to include phonon effects on
excitonic properties perturbatively [38–44]. At the same time,
quasiparticle excitations require a balanced description of
electron correlation, making ab initio models difficult to ap-
ply in nanocrystals where the number of atoms is large.
Tight-binding and pseudopotential models have been devel-
oped to study excitonic structure, but these have not yet
been unified with approaches to describe electron-phonon
effects [45–48].

II. THEORETICAL MODEL OF CsPbBr3 NANOCUBES

We use quasiparticle path integral molecular dynamics [49]
with an explicit atomistic description of the lattice, which
allows us to include all orders of anharmonicity from the
lattice and treat electron correlation exactly. This approach
has been previously successful at describing the excitonic
properties of bulk systems [15,37], and the lattice model we
employ has been used extensively to describe both vibra-
tional and nonlinear properties of a variety of lead halide
systems [48,50–52]. In this paper, we consider a system of
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a single biexciton interacting with CsPbBr3 cubic perovskite
nanocrystals. The model Hamiltonian consists of three pieces:
H = Hel + Hlat + Hint. Within an effective mass approxima-
tion, valid because of the highly dispersive bands [53], the
electronic Hamiltonian Hel is defined by kinetic energies and
Coulomb interactions between electrons and holes:

Hel =
∑

i

p̂2
i

2mi
+

∑
i �= j

qiq j

4πε∞|x̂i − x̂ j | , (1)

where the subscripts i, j ∈ {e1, e2, h1, h2} indicate two elec-
trons and two holes, respectively, p̂ and x̂ are momentum and
position operators, mi is the band mass set to 0.22 m0 and
0.24 m0 for electrons and holes in terms of the bare electron
mass m0, ε∞ = 4.3 is the optical dielectric constant in the
unit of vacuum permittivity ε0, and q is the charge of the
quantum particle which is −e for electrons and +e for holes
[54]. We consider a singlet biexciton, so electrons and holes
are distinguishable particles [55].

For the lattice, we model the CsPbBr3 nanocrystals explic-
itly using a previously validated ab initio derived force field
[48,50]. Its Hamiltonian is given by

Hlat =
N∑

i=1

p2
i

2mi
+ Ulat (xlat ), (2)

where xlat = {x1, x2, . . . , xN } are the positions of the N atoms
in the lattice, pi and mi are the momentum and mass for
the ith atom. The atomistic force field Ulat is the sum of
pairwise interactions with distance xi j = |xi − x j | consisting
of a Coulomb potential and Lennard-Jones potential [50]:

Ulat =
N∑

i, j=1

qiq j

4πε0xi j
+ 4εi j

[(
σi j

xi j

)12

−
(

σi j

xi j

)6
]
, (3)

where the parameters qi, εi j , and σi j are summarized in Table
S1 in the Supplemental Material [56]. The interaction between
the quasiparticles and lattice is written as the sum of pseu-
dopotentials between each quantum particle i and the lattice
particle j:

Hint =
∑

i

N∑
j=1

qiq j

4πε0

√
r2

cut + |x̂i − x̂ j |2
, (4)

where the cutoff distances rcut are chosen using the atomic
radii of each atom [15,49,57,58].

The quasiparticle interactions are screened by the optical
dielectric constant of the nanocrystal, which changes dis-
continuously at the boundary between the perovskite and
surrounding solution. To account for the dielectric discontinu-
ity, we use a multipole expansion [59], resulting in an effective
potential for each charge:

Uwall =
∑
i,k

q2
i

8πε0|x̂i − xwall,k| · ε∞ − ε0

ε∞ + ε0
, (5)

where i ∈ {e1, e2, h1, h2}, k ∈ {±x,±y,±z}, and xwall,k =
±L/2 is the position of the wall, with L as the edge length of
the nanocrystal. This external potential results in a dielectric
confinement. Additional details on the atomistic force field,

FIG. 1. Simulation snapshot of biexciton (left) and exciton
(right) interacting with CsPbBr3 perovskite nanocrystal, where L =
3.56 nm represents the edge length of the nanocrystal.

pseudopotentials, and wall potentials are described in the Sup-
plemental Material [56].

For electrons and holes, we use imaginary time path
integrals [60,61], while the heavy atoms of the lattice are
treated classically. The resultant partition function Z can be
written as

Z =
∫

D[xeh(τ ), xlat] exp

{
−

∫ β h̄

τ=0

H[xeh(τ ), xlat]

h̄

}
, (6)

where xeh(τ ) = {xe1 (τ ), xe2 (τ ), xh1 (τ ), xh2 (τ )}, where xi(τ )
is the position of quantum particle i at imaginary time τ , h̄
is the Planck’s constant, and β−1 = kBT , with kB and T as
the Boltzmann constant and temperature. Discretizing the
path action renders each quantum particle isomorphic to a
ring polymer, where neighboring time slices are connected
by harmonic springs [55,62]. We use molecular dynamics
simulations with a second-order discretization of the path
integral to compute expectation values of this system, for
which each quantum particle is represented by 1000 time
slices. Representative simulation snapshots of both the
biexciton and exciton are shown in Fig. 1. Throughout, we
consider nanocrystalline cubes, where L is the edge length.

For comparison, we also consider two approximate models
that incorporate harmonic and static lattice effects. To incor-
porate effects from harmonic phonons, we adopt a dynamic
screening model described previously [15,37], which is a
model for charges that are coupled linearly with the polar-
ization field generated by a collection of harmonic modes.
In this model, lattice variables are analytically integrated out,
resulting in an imaginary time influence functional that can
be studied straightforwardly numerically. We parametrize the
influence functional with a Frohlich coupling for the electrons
and holes αe = 2.65 and αh = 2.76 and an optical phonon
mode with energy h̄ω = 16.8 meV [54]. We also compare
a static lattice, where only the electronic Hamiltonian and
confinement effects are considered. All simulations are done
in LAMMPS [63], and the details of the discretized Hamiltonian
can be found in the Supplemental Material [56].

III. QUASIPARTICLE BINDING ENERGIES

With an explicit lattice, the exciton binding energy is

	X = lim
T →0

〈E〉e + 〈E〉h − 〈E〉ex − 〈Ulat〉ex,
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while the biexciton binding energy is

	XX = lim
T →0

2〈E〉ex − 〈E〉biex − 〈Ulat〉ex,

where the subscripts biex and ex refer to simulations of a
biexciton (two electrons and two holes) and exciton (elec-
tron and hole), while e/h indicates a simulation with only
electron/hole interacting with the surrounding lattice. Simu-
lations are performed at 50 K, which is low enough to extract
the ground-state energy. The binding energies are computed
from the average energy [64]:

〈E〉 = − ∂

∂β
lnZ[xeh(τ ), xlat (τ )], (7)

where xeh = {xe1 , xh1} or xeh = {xe1 , xe2 , xh1 , xh2} for an exci-
ton and biexciton, respectively. The derivative above produces
two terms, an average kinetic energy and an average potential
energy, where we use a virial estimator [65] to efficiently esti-
mate the kinetic energy. For the evaluation of binding energies
from the simulations with only quasiparticles, in the static or
dynamic approximation, the same definitions are used without
the lattice relevant terms. Within the static approximation, the
binding energies are determined by only He and the confining
potential. To efficiently extract the binding energies with dy-
namic approximation, we use a thermodynamic perturbative
theory approach [56].

Figure 2(a) shows the exciton binding energy 	X com-
puted from our molecular model in addition to those
approximated with the static or dynamic models for the
nanocubes considered, ranging from L = 2.4 to 6 nm. Given
the reduced mass of the exciton μ = 0.11 and optical dielec-
tric constant, the Bohr radius of the exciton is RX = 2.07 nm.
Thus, for the range of nanocrystals considered, we are in a
moderate to strong confinement regime. As a consequence,
all binding energy estimates exhibit a strong L dependence,
which we model in Fig. 2(a) as 	X = 	◦

X (1 + �1/L + �2
2/L2),

where 	◦
X is the bulk binding energy, and �1 and �2 are fit

parameters, taken here as purely phenomenological but which
can be deduced from perturbation theory [67,68].

Over the full range of nanocrystal sizes considered, the
static approximation yields a binding energy much larger than
either the explicit model calculation or the dynamic approx-
imation. The value from the static approximation with the
largest nanocrystal reasonably agrees with the expectation
from a Wannier-Mott model 	X,WM = RHμ/ε2

∞ = 84.5 meV,
where RH is a Rydberg energy. The values at finite L
agree well with recent pseudopotential-based calculations of
CsPbI3, up to a shift of the bulk binding energy by 20 meV to
account for the change in halide [48].

The explicit model calculations are reproduced well by
the dynamic approximation. The suppression of the binding
energy due to lattice effects could arise because of two distinct
mechanisms. First, the lattice could screen the electron-hole
interactions, weakening them. Second, the lattice can lower
the self-energies of the free charges, bringing them closer
to the exciton self-energy, effectively reducing the binding
energy. In agreement with previous calculations on bulk
MAPbI3 [37], we find the latter effect is more prominent. This
effect is outside of first-order perturbation theory that over-
estimates the decrease in the self-energy of the free charges,

FIG. 2. Energetics of exciton formation. (a) Exciton binding en-
ergy under static (	X,S black circles), dynamic (	X,D blue triangles),
and explicit lattice (red stars) models. Comparison to Weinberg et al.
[48] is shown in green squares. (b) The difference in the exciton bind-
ing energies from dynamic and static screenings, which is defined as
δX = 	X,S − 	X,D compared with Stokes shift measurements from
Brennan et al. [66] and Protesescu et al. [19]. Solid lines are fits
to 	X = 	◦

X (1 + �1/L + �2
2/L2) and δX = δ◦

X (1 + �′/L), with �1 =
10.5, 3.2, and 2.2 nm, �2 = 1.2, 1.1, and 0 nm for static, dynamic,
explicit lattices, respectively, and �′ = 257 nm.

which we find is −30 meV for both charges, and ignores
the decrease in self-energy of the polaron-exciton, which is
−12 meV. With the explicit perovskite lattice, the extrapolated
value to the large nanocrystal size limit is in good agreement
with bulk CsPbBr3 exciton binding energy of 40 meV, re-
flecting slight anharmonic weakening of the optical phonon
[19–24].

Shown in Fig. 2(b) is the difference between the dynamic
and static screening models δX = 	X,S − 	X,D. This energy
is due to polaron formation. The strong nanocrystal size de-
pendence reflects the increasing confinement of the charges,
which lower their self-energy by increasing their localiza-
tion, as the energy of a charge in a dielectric will decrease
like 1/L, which fits δX well. We find the polaron formation
energy agrees well with size-dependent Stokes shift mea-
surements made from the difference between absorption and
emission spectra [69]. Results from two different experiments
on CsPbBr3 nanocrystals [19,70] compare quantitatively well
with our computed δX , increasing from 10 meV to >450 meV.
Previously, a lattice origin of the Stokes shift had been disre-
garded due to the relatively small polaron formation energy in
the bulk [70]. However, we find the polaron formation energy
can increase substantially in small nanocrystals.

106002-3



YOONJAE PARK AND DAVID T. LIMMER PHYSICAL REVIEW MATERIALS 7, 106002 (2023)

FIG. 3. Energetics and structure of biexcitons. (a) Biexciton
binding energies for our explicit model (red stars) and its dynamical
(blue triangles) and static (black circles) approximations. Compar-
isons with Cho et al. [28] and Amara et al. [26] are shown in green
squares. The solid line is a fit to 	X X = 	◦

X X (1 + �̃1/L + �̃2
2
/L2),

with �̃1 = 30.4 nm and �̃2 ≈ 0 nm. (b) Electron-hole (blue) and
electron-electron (red) distributions of biexciton from the simula-
tions with explicit lattice.

With the excitonic energetics understood, we now turn
to the binding of biexcitons. The biexciton binding energy
	XX for the explicit model as well as the static and dynamic
approximations are shown in Fig. 3(a). All three models agree
quantitatively, indicating that contrary to expectations from
the exciton calculations, lattice effects are unimportant for
biexciton binding. We rationalize this by noting that the pri-
mary contribution from the lattice for the exciton was the
stabilization of the free charges due to the polaron formation,
which does not contribute to the biexciton energy.

In Fig. 3(b) are the electron-hole and electron-electron
radial probability distributions p(r) from simulations with
the explicit lattice, where electron-electron repulsion makes
the average distance slightly larger than the average electron-
hole distance. However, this increase is small, and their
size is largely determined by confinement rather than electron

correlation. Similar masses for the electron and hole produce a
very weak dipole in the exciton or quadrapole in the biexciton
that is not large enough to generate a polarization response
from the lattice. Further, the similar results in both binding
energies from the explicit lattice and dynamic models imply
that the anharmonicity coming from the explicit perovskite
lattice does not play a crucial role in determining the behavior
of biexcitons, likely due to the relatively small amplitude
distortion. However, 	XX is relatively large, between a half
and a quarter of 	X , indicating the importance of electron
correlation.

As with 	X , we find a strong system size dependence
of 	XX , increasing strongly with decreasing L. We model
this dependence as 	XX = 	◦

XX (1 + �̃1/L + �̃2
2
/L2), with

�̃1 and �̃2 employed as fitting parameters. While experi-
mentally values of 	XX have been reported between −100
and 100 meV [2,3,18,25–31], recent size-dependent mea-
surements on CsPbBr3 nanocubes from two different groups
[26,28] are shown in Fig. 3(a) and agree well with our results.
To our knowledge, these data are the only systematic size-
dependent binding energies available experimentally.

IV. CONCLUSION

In summary, we employed path-integral molecular dynam-
ics simulations to study quasiparticle energetics in perovskite
nanocrystals. Using atomic models and simple approxima-
tions, we can systematically explore the roles of the lattice
effects on exciton and biexciton binding energies. We found
that the lattice renormalizes the exciton binding energy sig-
nificantly in nanocrystals but not biexciton binding energies,
likely due to the weak coupling between the la ttice and
the neutral exciton complex. We found that biexcitons are
bound regardless of the size and the type of screening em-
ployed, which strongly suggests that experimental reports of
antibinding in CsPbBr3 are misinterpreted. We hope that the
quantification of the energies reported here can help better
constrain fitting of transient absorption data.
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