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Outer sphere electron transfer rates can be calculated from simulation data by sampling the

equilibrium statistics of the canonical reaction coordinate – the vertical energy gap. For these cal-

culations, electron transfer is typically represented by an instantaneous change in the atomic partial

charges. In this manuscript, we present an implementation of this procedure that utilizes an explicit

path-integral representation of the transferring electron. We demonstrate our methodology by com-

bining path integral molecular dynamics and Marcus-Hush-Chidsey theory to calculate the rate of

electron transfer from a Ferrocyanide complex to a gold electrode. We consider the dependence of

this rate on electron transfer distance and applied potential. We find that when the electron is rep-

resented explicitly via path integral molecular dynamics, as opposed to implicitly via fixed atomic

partial charges, the rates and thermodynamics are more consistent with experimental findings. We

then apply our methodology to explore the role of bridging spectator cations in modifying electron

transfer rates. We find, once again, that the path integral approach produces specific cation effects

that are more consistent with experiment than those in which the transfering electron is represented

implicitly.

I. INTRODUCTION

In molecular dynamics simulations of outer sphere elec-

tron transfer, the transferring electron is often repre-

sented implicitly, in terms of its effect on the nuclear

partial charges. This approach omits the effects of elec-

tronic fluctuations on solvent reorganization energies and

electron transfer rates. In this manuscript, we use classi-

cal molecular dynamics simulation with a path integral-

based representation of a transferring electron to study

interfacial electron transfer. By comparing to the stan-

dard approach, we find that an explicit representation of

the electron yields more accurate predictions for electron

transfer rates. We extend our approach to investigate the

effects of spectator cations on electron transfer rates. Our

results indicate that the observed spectator cation effect,

i.e., an increase in electron transfer rate with increasing

cation size, is due to the ion’s effect on the relative sta-

bility of the reduced and oxidized state, and not (as often

speculated) by its influence on the solvent reorganization

energy.

Most electrochemical technologies require the transfer

of electrons across the electrode-solution interface. The

molecular mechanisms that underlie these electron trans-

fer processes are very often poorly understood, which is

hindering our ability to optimize device performance and

efficiency. There are two broad categories of interfacial

electron transfer processes: the highly coupled inner-

sphere electron transfer and the weakly coupled outer-

sphere electron transfer. Here, we limit our focus to the
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latter, in which an electron tunnels between a solvated

redox species to an electrode. This type of outer-sphere

electron transfer is believed to dominate current flow in

a variety of electrochemical systems, particularly under

conditions where direct adsorption is limited.1–4

Thermal fluctuations of the interfacial electrostatic en-

vironment are known to play a crucial role in facilitat-

ing the process of outer-sphere interfacial electron trans-

fer. However, the specific roles that solvent molecules

and electrolyte species play in mediating electron trans-

fer events remain experimentally inaccessible. Therefore,

our current molecular-level understanding of these pro-

cesses is primarily derived from a combination of the-

ory, electronic structure calculation, and atomistic simu-

lation.

Marcus theory provides a general framework for com-

puting the rates of outer-sphere electron transfer pro-

cesses in condensed-phase systems. Within this frame-

work, thermodynamic parameters, such as the solvent

reorganization energy, reaction free energy, and the acti-

vation energy, can be calculated from the results of equi-

librium molecular dynamics simulations of the reactant

and product states. More specifically, the statistics of the

vertical energy gap, ∆E (i.e., the difference in potential

energy between the reactant and product states at fixed

nuclear position) are compiled to construct the diabatic

free energy surfaces – the so-called Marcus parabolas, as

illustrated in Fig. 1. This general approach to studying

electron transfer processes therefore requires (1) an ac-

curate model of the reactant and product states, and (2)

a robust approach for defining ∆E.

The standard method for meeting these requirements is

referred to as the identity exchange (IE) scheme. In this
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scheme, the reactant and product states are represented

by classical point-charge force fields that differ only in

the distribution of atomic partial charges. As such, the

transferring electron is described implicitly via the spe-

cific arrangement of atomic charges. In the earliest imple-

mentations of the IE scheme, the entire electron transi-

tions between two ionic centers,5,6 however, more recent

implementations have distributed the transferring elec-

tron charge across an entire molecular complex.7,8 While

this approach is both straightforward to implement and

computationally efficient, it neglects to account for the

spatial fluctuations of that transferring electron. The

thermodynamic consequences of these fluctuations have

not yet been broadly characterized.

Here, we introduce a method for modeling outer-sphere

electron transfer in which the electron is described ex-

plicitly, as a classical ring-polymer. In this method, the

molecular system (e.g., everything except for the trans-

ferring electron) is modeled with the same basic point-

charge force fields that are used in the IE scheme. The

ring-polymer electron and the molecular system are co-

evolved using standard path integral molecular dynam-

ics (PIMD). Our PIMD scheme allows us to account for

the effects of electronic fluctuations in the reorganization

energy, reaction free energy, and electron transfer acti-

vation energy. While similar PIMD methods have been

utilized to evaluate the role of electronic fluctuations in

exciton dynamics9–11, polaron physics12,13, an electron

trapping14 in semiconducting materials, they have not

yet been applied to study interfacial electron transfer.

The remainder of the manuscript is organized as fol-

lows. Section II introduces the methodology that we

adopt and computational details with the specific system

of interest. In Sec.III, we report and discuss the key prop-

erties of electron transfer computed using both PIMD

and IE scheme, and apply the path integral framework

to investigate the influence of bridging cation. Finally,

Sec.IV provides a summary and concluding remarks.

II. THEORETICAL FRAMEWORK

A. A model of interfacial electron transfer

We consider a molecular system consisting of a redox

species in an electrolyte solution confined between a pair

of solid constant potential electrodes, such as depicted in

Fig.1. The molecular system is accompanied by a single

active electron – modeled as a classical ring polymer –

that is capable of transferring between the redox species

and the electrodes. Together, the molecular system and

the active electron are charge neutral. The dynamics of

the molecular system and the electron ring polymer are

simulated with classical molecular dynamics, and the re-

sulting trajectories are analyzed in the context of Marcus

theory15,16.

Model energetics are described by a three-term Hamil-

tonian, Htot = Hel + Hmol + Hint, describing the ring

polymer electron, the molecular system, and their inter-

actions, respectively. The electronic properties are deter-

mined by Hel and Hint, which describe the kinetic and

potential energy of the electron, respectively. Specifi-

cally,

He =
p̂2
e

2me
, (1)

where p̂el is the momentum operator of the electron, me

is the electron mass, and

Hint = Uel−mol(x̂el, {xN}mol), (2)

where Uel−mol is the interaction potential between the

ring-polymer electron and the molecular system, x̂el is

the position operator of the electron, and {xN}mol =

{x1, x2, . . . ,xN} denotes the positions of the N atoms

that comprise the molecular system. The molecular sys-

tem properties are determined by the molecular Hamil-

tonian,

Hmol =

N∑
i=1

p2
i

2mi
+ Umol({xN}mol), (3)

where pi and mi are the momentum and mass of atom i,

and Umol is the interaction potential governing all inter-

molecular interactions, formulated as a classical molecu-

lar mechanics force field.

B. The electron ring polymer

To capture the quantum mechanical nature of the elec-

tron, we adopt a formalism based on the imaginary time

path integral17–20. In this formalism, the partition func-

tion of a molecular system, Z, is be written as

Z =

∫
d3N{xN}mole

−βUmol ×Zel[{xn}el], (4)

where the partition function of the active electron, Zel,

is given by,

Zel[{xn}el] =
∫

d3n{xn}ele−(Sel+Sint)/ℏ (5)

where β−1 = kBT , and T , kB, and ℏ denote the temper-

ature, Boltzmann constant, and reduced Planck’s con-

stant, respectively. The parameter n denotes the num-

ber of discretized slices along the imaginary time path.
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The path actions for the electron and its interactions are

given by

Sel =

∫ βℏ

τ=0

Hel,τ , Sint =

∫ βℏ

τ=0

Hint,τ (6)

where the τ -dependent Hamiltonian represents its clas-

sical analog at imaginarity time τ . For practical imple-

mentation, the path action is discretized into n imaginary

time slices, such that the quantum particle is equivalently

represented as a classical ring polymer composed of n

beads linked by harmonic springs.21 The associated path

action is given by,

Sel =

n∑
i=1

men

2βℏ
(xel,i − xel,i+1)

2 (7)

where xel,i is the position of ith bead with xel,n+1 = xel,1.

Similarly, Sint is determined based on Eq.2, where the

imaginary time path is fully resolved and the resultant

action is evaluated as a sum over all time slices.

The interactions between the electron and classical nu-

clei is modeled using a pseudo potential in form of a trun-

cated Coulomb potential. Specifically, the interaction po-

tential between ith bead of the ring-polymer electron and

jth classical atom in the molecular system is given by,

U ij
el−mol =

qiqj

4πε0n
√

αj + |xel,i − xj |2
(8)

where q and ε0 are the charge and vacuum permittivity,

respectively. The pseudopotential parameter, α, is cho-

sen based on the charge and characteristic size of each

atom,22–24 along with the condition that the electron re-

mains localized around the redox species.

C. Computing diabatic free energy surfaces

Marcus theory establishes that the canonical reac-

tion coordinate for solution-phase outer-sphere electron

transfer is the vertical energy gap, commonly denoted as

∆E15,16. The vertical energy gap is the instantaneous en-

ergy difference between the oxidized and reduced states

of the system at fixed nuclear configurations. The dia-

batic free energy surfaces are related to the equilibrium

statistics of ∆E through the foundational relationship,

A(∆E) = −kBT lnP (∆E). In a system that obeys lin-

ear response, this relationship yields diabatic free energy

surfaces that are quadratic, otherwise known as Marcus

parabolas, such as illustrated in Fig. 1.

We generate diabatic free energy surfaces by sampling

the equilibrium statistics of ∆E for configurations origi-

nating from the oxidized or reduced diabatic states. For

the reduced state diabatic free energy surface, we sam-

ple equilibrium configurations where the electron occu-

pies the redox species, computing ∆E = Eox({rN}mol)−
Ered({rN}mol), where Eox({rN}mol) and Ered({rN}mol)

are the potential energies of the system in the oxidized

and reduced states, respectively, at fixed nuclear con-

figuration, {rN}mol. More specifically, Ered is the total

system potential energy when the ring polymer electron

occupies the redox species, in its original equilibrium con-

figuration, and Eox is the total system potential energy

with the electron removed from the simulation and the

electrode charges adjusted to restore constant potential.

In the latter case, the transferring electron is assumed to

equilibrate within the electronic manifold of states within

the potentiostatically controlled electrode.

If the equilibrium statistics exhibit Gaussian statistics,

then we approximate the full free energy profiles with

parabolic fits,

A(∆E) = − (∆E − ⟨∆E⟩)2

2σ2
(9)

where ⟨∆E⟩ σ are the mean and standard deviation of

the vertical energy gap distribution. With the ∆E as

the reaction coordinate, the free energy surface of the

oxidized state can be constructed analytically from that

of the reduced state (or visa versa). In the linear re-

sponse case, the curvature of the oxidized and reduced

Marcus parabolas are identical, i.e., σox = σred, and their

means are related by ⟨∆E⟩ox = ⟨∆E⟩red − σ2
red/kBT .

Consequently, the free energy difference between the two

states, identified as the thermodynamic driving force,

is expressed as ∆A = Aox(⟨∆E⟩ox) − Ared(⟨∆E⟩red) =

mred − σ2
red/(2kBT ). The Marcus parabolas allow us to

determine two key kinetic parameters: the reorganiza-

tion energy, λ = σ2
red/(2kBT ), and the activation energy,

∆A‡ = (λ+∆A)2/(4λ).

D. Calculating Heterogeneous Electron Transfer

Rate Constant

Our computational protocol for computing ∆E is il-

lustrated in the schematics of Fig.2. In this way, the net

charge difference between the reduced and oxidized states

is −e and +e for the electrodes and the anion complex,

respectively, which we demonstrate in the SI (Fig.S1B).

We base our analysis of interfacial electron transfer

kinetics on Marcus–Hush–Chidsey (MHC) theory25–27.

This theoretical framework extends the classical Marcus

theory by incorporating the influence of electrode density

of states and Fermi-Dirac statistics, making it well suited

for modeling interfacial reactions under electrochemical

conditions. At a given overpotential η, the rate expres-
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FIG. 1. (A) Snapshot of a molecular dynamics simulation illustrating [Fe(CN)6]
4− in an aqueous electrochemical cell between

two gold electrodes. As shown in the top schematic, an electron−represented as a ring polymer (gray)−is bound to [Fe(CN)6]
3−,

forming [Fe(CN)6]
4−. Atoms shown in red, white, brown, green, cyan, and blue represent O, H, Au, Fe, C, and N, respectively,

and yellow atoms are K+ ions for system charge neutrality. By convention, the z-axis is defined as perpendicular to the

electrode surfaces. The gray shaded areas around the electron are visual guides to emphasize the ring polymer representation

of the electron. (B) Schematic illustration of diabatic free energy surfaces along a reaction coordinate x labeling key quantities

involved in electron transfer – reorganization energy (λ), thermodynamic driving force (∆A), and activation energy (∆A‡) –

between state A and state B, within the Marcus theory. In the present study, electron transfer process is considered from state

B to state A.

sion is given by

kMHC = γ

∫ ∞

−∞
dx

1

1 + ex/kBT
exp

{
− (x− λ+ eη)

2

4λkBT

}
(10)

with

γ =
|K|2

ℏ (4πλkBT )1/2
(11)

where γ is the pre-exponential factor, incorporating the

electronic coupling strength K, and the variable of inte-

gration, x, represents the energy level of electronic states

in the electrode relative to the Fermi level. The overpo-

tential is given by η = Vext −∆A, where Vext is the ap-

plied electrode potential relative to the potential of zero

charge. In the limit where the reorganization energy λ

is much larger than the thermal energy kBT , the MHC

rate expression can be simplified analytically to yield the

following expression,

kMHC = γ

√
πλ′

1 + e−η′ erfc

(
λ′ −

√
a+ η′2

2
√
λ′

)
(12)

where a = 1 +
√
λ′ and the primed parameters repre-

sent reduced quantities normalized by the thermal energy

kBT . This expression captures the probabilistic nature

of electron occupancy in the electrode and the thermal

broadening of energy levels at finite temperature, high-

lighting that the MHC framework offers a refined theoret-

ical description of electron transfer kinetics at electrode

interfaces, particularly under electrochemical conditions.

E. Computational Methodology

The section above describes a general approach to us-

ing PIMD for computing interfacial outer-sphere electron

transfer rates. To demonstrate the utility of this ap-

proach, we apply it study a specific system: the outer-

sphere electron transfer from a ferrocyanide complex

[Fe(CN)6]
4− to a gold electrode at the aqueous electrode

interface. This well-studied ET reaction serves as a repre-

sentative system to validate our method and to highlight

the effects of electronic fluctuations on the kinetics and

thermodynamics of electron transfer.

F. Atomistic Simulation Details

We perform atomistic molecular dynamics simulations

to study heterogeneous electron transfer of ferrocyanide

in aqueous electrochemical cell, as illustrated in Fig. 1.

The system contains 1658 water molecules, a single

[Fe(CN)6]
4− anion, and 4 K+ as counterions. The so-

lution is confined between two parallel electrodes aligned

in the xy-plane and separated by a distance of 8nm. The

z-axis therefore defines the direction perpendicular to the

electrode surfaces. Each electrode consists of three lay-

ers of atoms arranged in an ideal FCC lattice, with lat-

tice constant dAu = 4.17 (consistent with metallic Au),

and the 111 facet exposed to the solution. The reduced

and oxidized states of the redox species are distinguished

based on the location of the ring polymer electron. When

the redox species and the electron are spatially separate,

the species is considered to be in the oxidized state, i.e.,
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ferricyanide, with a net charge of −3e. When the re-

dox species and the electron are colocalized (bound), the

species is in the reduced state, i.e., ferrocyanide, with a

net charge of −4e. The snapshot in Fig. 1 depicts a fer-

ricyanide configuration. While conceptually simple, this

approach reasonably reproduces the solvation structures

reported in the literature7 around the anion in both ferri-

and ferrocyanide states (Fig.S1A). The electron is quan-

tized by 1000 time slices which is large enough to properly

describe the behavior of electron in water where fictitious

masses for the beads are set to 1 amu for computational

simplicity.

The dimension of the system is 2.7nm×2.7nm×8.0nm,

ensuring that the system captures both bulk and interfa-

cial regions28, and periodic boundary conditions are ap-

plied in the x and y directions. For interaction potentials,

SPC/E model29 is used for water and metal electrodes are

modeled using parameters developed by Heinz et al.30.

The parameters for the ferrocyanide and counterions are

adopted from the studies in the literature7,31, which has

been shown to accurately reproduce the structure of the

anion in the aqueous environment. A summary of param-

eters including pseudopotentials used in the simulations

is provided in Supporting Information (Table S1 and S2).

Simulations were performed in the canonical (NVT)

ensemble with Langevin thermostat to control the tem-

perature and a timestep of 1 fs. We employ constant po-

tential method32 using the LAMMPS33 ELECTRODE

package34 where the charges of electrode atoms fluctu-

ate in response to the nearby electrostatic environment,

resulting in a constant potential between the two elec-

trodes. The positions of the electrode atoms are fixed

during the simulations. In addition, the bond lengths

and angles of water molecules were constrained using the

SHAKE algorithm35 and long-range electrostatic inter-

actions were treated with the particle-particle particle-

mesh algorithm with a real-space cutoff of 13 Å. All

simulations were carried out using LAMMPS.

G. A Comparative Identity Exchange Scheme

To benchmark and validate our PIMD scheme, we com-

pare our results to the standard IE scheme. In the IE

scheme, the oxidized and reduced states differ only in the

distribution of atomic point charges (i.e., all other force

field parameters are identical) and ∆E is computed by

changing the charges at fixed nuclear configuration. Un-

like our PIMD scheme, which explicitly capture the fluc-

tuating effects of quantum delocalization, the IE scheme

treats the transitioning electron as a static object, in

terms of fixed atomic partial charges. The IE approach

has been widely used in classical molecular simulations

FIG. 2. (A) Schematic illustrating the inner-sphere elec-

tron transfer process via the PIMD scheme. In the reduced

state (left), the electron occupies the ferricyanide complex,

resulting in a total charge 4-, whereas in the oxidized state

(right), the electron has merged with the charge distribution

of the constant potential electrode (B) Probability distribu-

tion p(∆E) with the values of ∆E collected from a reduced

state. (C) The representative free energy surfaces F (∆E)

where the red and blue curves correspond to the parabolic

fits for the reduced and oxidized diabatic free energy surfaces,

respectively. Symbols denote the statistics derived from sim-

ulation data. In panels (B) and (C), dz = 2nm where dz is

defined as the shortest distance between the center of mass of

the anion complex and the first layer of electrode atoms.

for computing vertical energy gaps and reorganization

energies within the Marcus framework. To facilitate a

consistent comparison, the PIMD- and IE-based simu-

lations share an identical set of force field parameters,

except for the partial charges on the ferro-cyanide com-

plexes. In the IE scheme, ∆E is computed by switching

the values of the atomic charges of the ferri- or ferro-

cyanide complex, at fixed nuclear coordinates. The force

field parameters for the IE scheme are specified in Table

S3.

III. RESULTS AND DISCUSSIONS

In this section, we present simulation results focused

primarily on calculations of the Marcus-Hush-Chidsey

electron transfer rate, kMHC, along with the termody-

namic parameters λ, ∆A, and ∆A‡, under varying sys-

tem conditions. We benchmark our results against ex-

periment, when available, although quantitative agree-

ment is not expected due to the highly idealized nature

of our simulation setup (e.g., featureless electrodes, non-

polarizable solvent, etc.). Despite this, we expect that

the general trends we observe are qualitatively reliable.

To evaluate the consequences of modeling the transition-



6

FIG. 3. The dependence of electron transfer properties on transfer distance, dz. In each panel, we compare the results of

PIMD- and IE-based sampling schemes, as plotted in red and blue, respectively. (A) Reorganization energy, λ. (B) Electron

transfer free energy, ∆A. (C) Mean vertical energy gap ⟨∆E⟩. (D) Entropic driving force, ∆S. (E) Activation energy ∆A‡.

For panel (E), different symbols indicate different temperatures: stars (280K), circles (298K), triangles (320K), and squares

(340K). (F) MHC ET rate constants, kMHC, with constant electronic coupling strength K = 25meV7. Dotted lines indicate

linear fits, and solid lines are guides to the eye.

ing electron explicitly, we compare the results of our

PIMD scheme to those generated with an IE scheme car-

ried out on a practically identical system, as described

above in Sec. IIG.

A. Dependence of kMHC on electron transfer

distance

We analyze the statistics of the vertical energy gap,

∆E, to derive key ET properties− including reorganiza-

tion energy (λ), activation energy (∆A‡), and reaction

free energy (∆A), schematically illustrated in Fig.1. To

investigate the spatial dependence of electron transfer

rate on transfer distance, we present these key proper-

ties as a function of the separation distance between the

redox complex and the electrode surface, denoted as dz.

We find that in all of our simulations, the statistics of ∆E

are approximately Gaussian, indicating that the simpli-

fying approximations of Marcus theory (such as discussed

in Sec. II C), can be applied to the analysis of our data.

The width of the Marcus parabola exhibits a sys-

tematic trend, with σox = σred increasing as the redox

species-electrode separation, dz, decreases. This trend

leads to a corresponding trend in the reorganization en-

ergy, with λ decreasing as dz decreases. As Fig. 3A high-

lights, this trend is observed for both the PIMD and IE

schemes, which follow the same trend but differ by an

additive constant (arising from differences in the value

of ∆A). This shared distance dependent trend reflects

the classical image charge effect,36 where closer proxim-

ity to the electrode stabilizes charge distributions and

compresses the energetics, confirming that our approach

captures the expected electrostatic behavior of ET at the

interface.

The dependence of ∆A on dz is plotted in Fig. 3B.

We observe that the two methods yield qualitatively dif-

ferent results. Although neither approach exhibits sig-

nificant dependence on dz, we find that ∆A < 0 in the

PIMD simulations (indicating the oxidized state is more

stable) while ∆A > 0 for the IE simulations. This dis-

crepancy in sign likely arises from the fundamentally dif-

ferent treatment of the transferring electron. In PIMD,

the excess electron is explicitly represented as a quan-

tum ring polymer, allowing it to polarize and interact

with the environment in a physically consistent way. In

contrast, the IE scheme enforces a charge reassignment

without accounting for the microscopic solvation or elec-

tronic delocalization, potentially overstabilizing the re-

duced state. This simplified treatment also contributes to

the markedly larger ∆E values observed in the IE model,

as plotted in Fig. 3C, reflecting its inability to capture
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quantum mechanical delocalization of the electron.

We quantify the entropic contribution to electron

transfer, ∆S, by performing a linear fit of the electron

transfer free energy ∆A as a function of temperature,

with the slope of yielding −∆S. This quantity reflects

thermodynamic contributions from the ensemble of nu-

clear configurations that contribute to electron transfer.

The dependence of ∆S on dz is plotted in Fig. 3D. We

observe that the variation of ∆S with dz is negligible,

and the values obtained from PIMD simulations and the

identity exchange scheme are largely consistent with each

other. This indicates that entropic effects play only a mi-

nor role in the overall driving force, and that the electron

transfer process is primarily governed by energetic con-

tributions.

The effect of ET rate on distance can be intuitively un-

derstood by considering the effect of dz on the activation

energy, ∆A‡, as plotted in Fig. 3E. For the IE scheme,

the dependence of ∆A‡ on dz is relatively weak, while in

contrast, the PIMD results exhibit a more pronounced

dz dependence, with ∆A‡ decreasing as the redox center

approaches the electrode. This trend indicates that at

closer distances, enhanced electrostatic interactions and

interfacial solvent polarization more effectively stabilize

the transition state. As our data indicates, this trend is

observed across a range of different temperatures.

The values of λ and ∆A combine to yield the Marcus-

Hush-Chidsey interfacial ET rate constant, kMHC, as pre-

sented in Eq. 12. The resulting dependence of kMHC on

dz is plotted in Fig. 3F. The PIMD scheme predicts rate

constants with a pronounced distance dependence, in-

creasing significantly as the redox species approaches the

electrode. We observe that the averaged rate constants

at separations near dz ≈ 10Å are in reasonable agree-

ment with experiment values (∼ 0.1 cm/s).37,38 This ob-

servation suggests (unsurprisingly) that in the physical

system, redox current is largely influenced by species lo-

cated near the electrode, though not necessarily in direct

contact with it. We note that since the electronic cou-

pling is assumed to be constant in our analysis, this re-

ported distance dependence is completely due to changes

in the thermodynamic parameters λ and ∆A. In con-

trast, the IE scheme predicts unphysically small rates,

effectively vanishing across all distances, with no signif-

icant distance dependence. The contrast between the

PIMD- and IE-based rate constants highlights a funda-

mental distinction between the two approaches. For the

IE-based approach, agreement with experiment evidently

relies on the emergence of a strong interfacial electronic

coupling, while in the PIMD approach, both coupling and

solvent/electronic fluctuations contribute to the large ob-

served electron transfer rates.

When comparing our simulation results with exper-

FIG. 4. Response of electron transfer properties to the ap-

plied electrode potential ∆V at a fixed anion–electrode sep-

aration of dz = 6Å, computed using path integral molecular

dynamics. (A) Reorganization energy λ. (B) thermodynamic

driving force ∆A. (C) Activation energy ∆A‡ (D) Resulting

ET rate constants kMHC.

imental estimates, we find that the computed reorga-

nization energies tend to slightly overestimate the re-

ported values, yet remain within a physically reasonable

range.39–41 For the activation barrier, the PIMD results

fall closer to experimentally plausible values,7,42 reinforc-

ing the validity of the path-integral framework in cap-

turing realistic interfacial ET energetics. This compari-

son not only reveals the quantitative differences between

the two methods but also highlights scenarios in which

the classical IE scheme yields inconsistent or unphysical

trends. At the same time, the analysis also identifies

properties for which both approaches produce qualita-

tively similar results, providing insight into when the IE

model may offer a reasonable approximation and when

a quantum treatment is essential. Overall, our results

highlight the potential importance of accounting for the

effects of electronic fluctuations in calculations of outer-

sphere electron transfer rates.

B. Dependence of ET rate on applied electrode

potential

We now examine how the properties that determine

kMHC are affected by changes in the applied electrode

potential as calculated with the PIMD scheme. To iso-

late the effects of the electrode potential, we constrain
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the position of the redox species at dz = 6Å. We observe

that the reorganization energy shows only a modest de-

pendence on the electrode potential, with a general ten-

dency to decrease as the potential increases, as plotted in

Fig. 4A. To further examine this behavior, we also carried

out calculations using IE scheme, which revealed a simi-

larly weak decreasing trend (Fig.S2). This observation is

inconsistent with the MHC theory assumption that the

reorganization energy is potential independent. Our re-

sults suggest that interfacial electric fields affect solvent

structure and dynamics in such a way as to fluctuation

amplitudes.

The thermodynamic driving force ∆A (Fig.4B) ex-

hibits a pronounced linear decrease with increasing po-

tential. This trend reflects the downward shift of the

Fermi level relative to the redox species at more pos-

itive potentials, which preferentially stabilizes the oxi-

dized state relative to the reduced state. Similarly, the

activation energy ∆A‡ decreases nearly linearly with in-

creasing ∆V (Fig.4C), consistent with Marcus theory in

the regime where λ varies modestly and ∆A dominates

the barrier height.

We observe that the overall electron transfer rate,

kMHC, computed via Eq. 12 and plotted in Fig. 4D, ex-

hibits a significant increase with increasingly applied po-

tential, due primarily to the reduction in activation bar-

rier and enhanced thermodynamic driving force. This

behavior aligns with the expected directionality of elec-

tron transfer under oxidation bias and further demon-

strates that the path integral framework yields physically

meaningful rate trends across the electrochemical poten-

tial range explored.

C. Influence of Bridging Cations on Interfacial ET

There is ample evidence that the rate of outer sphere

interfacial electron transfer is sensitive to the identity of

cation in the supporting electrolyte. However, the phys-

ical origin of this specific cation effect remains a topic of

debate. Some hypothesize that these effects arise through

the cations’ influence on solvent reorganization energy,

λ, e.g., the so-called structure-making and structure-

breaking influence on aqueous molecular structure.7,43,44

Others hypothesize that cations facilitate electron trans-

fer by bridging the gap between the redox species and

the electrode, thereby offering a more favorable tunnel-

ing environment for the electron.4 Here, we use our PIMD

scheme to evaluate these two hypotheses.

To investigate the role of cation identity on interfa-

cial electron transfer rate, we carried out simulations in

which a cation with a varying ionic radius is constrained

to reside between the redox species and the electrode, as

FIG. 5. Effect of bridging cation size on heterogeneous elec-

tron transfer properties. Results are shown as a function of

cation diameter σ where the bridging cation is positioned

between the redox complex and the electrode surface (top

schematic). Red symbols denote results from PIMD simula-

tions whereas blue symbols indicate results from IE scheme.

(A) Thermodynamic driving force ∆A. (B) Distance dFe–*
between the Fe atom and bridging cation (open circles) and

N atom in redox complex (filled triangles). (C) Reorganiza-

tion energy λ (D) ET rate constant kMHC. Filled diamond

symbols in (A,C) indicate the results without bridging cation

and cation species include Li+, Na+, K+, Rb+, and Cs+.

illustrated in Figure 5. In all cases, the redox species

is constrained to reside at a distance from the electrode

of dz = 8Å. No constraint was placed on the specific

distance between the bridging cation and the redox com-

plex, allowing it to equilibrate naturally within that re-

gion. Ionic radii were selected to correspond with the se-

ries Li+, Na+, K+, Rb+, and Cs+. The average distance

between the Fe atom at the center of the redox com-

plex and the bridging cation (open circles) is shown in

Fig. 5B, computed from both PIMD and IE simulations.

Also shown are the average Fe–N distances within the

anion complex (filled triangles), pointing to a transition

in spatial organization: for small, high charge density

cations such as Li+, the bridging ion preferentially asso-

ciates more closely with the redox center, even partially

intercolating with the coordianting ligands, whereas for

larger cations like Cs+, reduced electrostatic attraction

leads to a more peripheral positioning, indicating a weak-
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ening of direct interaction with the redox site.

The thermodynamic driving force ∆A, plotted in

Fig. 5A, clearly reflects the transition behavior in bridg-

ing cation position. Among smaller cations, such as Li+

and Na+, ∆A exhibits a steep drop, which indicates a

substantial shift in relative stability of the reduced state

of the redox species. As the cation size increases further,

the changes in ∆A become more gradual, suggesting that

the less strongly bound cations have a smaller influence

on the relative stability of the reduced state of the re-

dox species. The influence of cation size is clearly man-

ifested in the thermodynamic driving force ∆A across

both PIMD and IE approaches, and similarly shapes the

activation energy ∆A‡ trends shown in Fig.S3.

The reorganization energy shows relatively weak sen-

sitivity to cation size (Fig. 5C). This insensitivity is

somewhat surprising given the pronounced differences in

the positioning and stabilization effects described above.

One possible explanation for this insensitivity is that

there is an interplay of counteracting effects. For ex-

ample, although Li+ possesses higher charge density and

would typically be expected to enhance solvent reorga-

nization, its close proximity to the redox complex lim-

its its influence on the surrounding solvent environment.

On the other hand, larger cations like Cs+ exhibit lower

charge density but reside further from the redox center,

allowing greater interaction with the surroundings. Such

an interplay would align with the view that the primary

role of the bridging cation is to modulate the stabilization

of reactant and product states, rather than substantially

altering the structural reorganization pathway.45,46

Turning to the resultant ET rate constants kMHC,

Fig.5D shows the computed ET rates from both the

PIMD and IE schemes. Here, we observe that the

ET rates obtained from the PIMD simulations increase

markedly with cation size, primarily driven by the more

favorable thermodynamic driving forces ∆A associated

with larger cations. In contrast, the IE scheme yields

negligibly small rates across all cations due to unrealis-

tically high activation barriers, effectively masking any

underlying size-dependent trends. The increasing trend

in ET rates with cation size, as captured by the PIMD

simulations, is in qualitative agreement with prior exper-

imental observations,7 providing additional support for

the importance of considering the explicit details of the

transferring electron in simulations of interfacial ET.

Finally, to provide a reference for evaluating the bridg-

ing cation effect, we include results from a simulation

without a bridging cation, marked by filled diamond sym-

bols in each plot of Fig.5. These reference points cor-

respond to simulations conducted with K+ and a redox

species–electrode separation of dz = 8Å, as previously re-

ported in Fig.3. Interestingly, in the absence of a bridging

cation, we observe comparable reorganization energies

but slightly more negative thermodynamic driving forces,

resulting in higher ET rates. This outcome may stem

from stronger direct electrostatic interactions between

the redox complex and the electrode, which are otherwise

partially screened by the presence of the cation. While

these findings suggest that a cation-free interface can, in

some cases, enhance ET kinetics, they more broadly high-

light the sensitivity of ET behavior to the presence and

size of intermediate ions in governing interfacial electron

transfer processes.

IV. CONCLUSIONS

We have developed and applied a path integral molec-

ular dynamics framework to model electron transfer at

electrochemical interfaces, explicitly accounting for the

quantum nature of the transferring electron. Using this

framework, we construct Marcus parabolas from PIMD

simluations to extract key ET properties—including re-

organization energy, thermodynamic driving force, and

activation energy—aligned with established physical un-

derstanding. By comparing this approach with a classi-

cal identity-exchange scheme, we demonstrated that the

PIMD method provides robust estimates of these quanti-

ties, leading to ET rates that better reflect the underly-

ing physics. Furthermore, our analysis of bridging cation

effects reveals that the size and spatial positioning of in-

termediate ions can meaningfully influence ET thermo-

dynamics, while the absence of a bridging cation results

in a subtle change in thermodynamic driving force that

contributes to a modest enhancement in the ET rate.

These findings highlight the utility of the path-integral

framework in capturing detailed interfacial behavior and

emphasize the importance of explicitly modeling excess

electrons when studying ET in complex electrochemical

environments beyond classical approximations.
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